Mathematics: Number Sense

1st Grade

1. **Students understand and use numbers up to 100:**
 - Know the addition facts (sums to 10) (LO=13/91, 14%)
 - Compare and order whole numbers to 100 (LO=14/91, 15%)
 - Represent equivalent forms of the same number through the use of physical models, diagrams, and number expressions (to 20) (e.g., 8 may be represented as 4 + 4, 5 + 3, 2 + 2 + 2 + 2, 10 - 2, 11 - 3)
 - Count and group object in ones and tens (e.g., three groups of 10 and 4 equals 34, or 30 + 4)
 - Identify and know the value of coins and show different combinations of coins that equal the same value.

2. **Students demonstrate the meaning of addition and subtraction and use these operations to solve problems:**
 - Know the addition facts (sums to 10) (LO=15/91, 16%)
 - Use concrete objects to determine the answers to addition and subtraction problems (for two numbers that each less than 10) (LO=2/43, 5%)

3. **Students use estimation strategies in computation and problem solving that involve numbers that use the ones and tens places:**
 - Recognize when an estimate is reasonable.

2nd Grade

1. **Students understand the relationship between numbers, quantities, and place value in whole numbers up to 1,000:**
 - Use words, models, and expanded forms (e.g., 45 = 4 tens + 5) to represent numbers (to 1,000) (LO=9/84, 11%)
 - Order and compare whole numbers to 1,000 by using the symbols <, =, > (LO=10/84, 12%)

2. **Students estimate, calculate, and solve problems involving addition and subtraction of two- and three-digit numbers:**
 - Use the inverse relationship between addition and subtraction (e.g., opposite number sentence of 8 + 6 = 14 is 14 - 6 = 8) to solve problems and check solutions.

3. **Students model and solve simple problems involving multiplication and division:**
 - Know the multiplication tables of 2s, 5s, and 10s (to 10 = 9/112, 11%)

4. **Students understand the relationship between whole numbers, simple fractions, and decimals:**
 - Recognize when an estimate is reasonable.

3rd Grade

1. **Students understand the place value of whole numbers:**
 - Count, read, and write whole numbers to 10,000 (LO=10/112, 9%)

2. **Students calculate and solve problems involving addition, subtraction, multiplication, and division:**
 - Find the sum or difference of two whole numbers between 0 and 10,000 (LO=11/112, 10%)

3. **Students use estimation strategies in computation and problem solving that involve numbers that use the ones, tens, hundreds, and thousands places:**
 - Recognize when an estimate is reasonable in measurements (e.g., closest inch) (LO=1/84, 1%)

4. **Students understand the relationship between whole numbers, simple fractions, and decimals:**
 - Recognize when an estimate is reasonable.

*Emphasized standard

CA Standards Test (CST) = # of Questions/Total # Questions

Learning Objectives (LO) = # of LO/Total # of LO

DataWorks Educational Research (800) 495-1550

www.dataworks-ed.com
Mathematics: Number Sense

<table>
<thead>
<tr>
<th>4th (CST=31/65, 48%)</th>
<th>5th (CST=29/65 or 45%)</th>
<th>6th (CST=25/65 or 39%)</th>
<th>7th (CST =22/65 or 34%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Students understand the place value of whole numbers and decimals to two decimal places and how whole numbers and decimals relate to simple fractions. Students use the concepts of negative numbers: (LO=27/136, 20%).</td>
<td>1.0 Students compute with very large and very small numbers, positive integers, decimals, and fractions and understand the relationship between decimals, fractions, and percents. They understand the relative magnitudes of numbers: (LO=26/137, 19%).</td>
<td>1.0 Students compare and order positive and negative fractions, decimals, and mixed numbers. Students solve problems involving fractions, ratios, proportions, and percentages: (LO=20/148, 14%).</td>
<td>1.0 Students know the properties of, and compute with, rational numbers expressed in a variety of forms: (14 CAHSEE) (LO=35/203, 17%).</td>
</tr>
<tr>
<td>1.1* Read and write whole numbers in the millions.</td>
<td>1.1 Estimate, round, and manipulate very large (e.g., millions) and very small (e.g., thousandths) numbers.</td>
<td>1.1* Compare and order positive and negative fractions, decimals, and mixed numbers and place them on a number line.</td>
<td>1.1 Read, write, and compare rational numbers in scientific notation (positive and negative powers of 10) with approximate numbers using scientific notation. (1 CAHSEE)</td>
</tr>
<tr>
<td>1.2* Order and compare whole numbers and decimals to two decimal places.</td>
<td>1.2* Interpret and use ratios in different contexts (e.g., batting averages, miles per hour) to show the relative sizes of two quantities, using appropriate notations (a/b, a to b, a:b).</td>
<td>1.2* Interpret and use ratios in different contexts (e.g., batting averages, miles per hour) to show the relative sizes of two quantities, using appropriate notations (a/b, a to b, a:b).</td>
<td>1.2* Add, subtract, multiply, and divide rational numbers (integers, fractions, and terminating decimals) and take positive rational numbers to whole-number powers. (3 CAHSEE)</td>
</tr>
<tr>
<td>1.3* Round whole numbers through the millions to the nearest ten, hundred, thousand, ten thousand, or hundred thousand.</td>
<td>1.3* Use proportions to solve problems (e.g., determine the value of N if 4/7 = N/21, find the length of a side of a polygon similar to a known polygon). Use cross-multiplication as a method for solving such problems, understanding it as the multiplication of both sides of an equation by a multiplicative inverse.</td>
<td>1.3* Use proportions to solve problems (e.g., determine the value of N if 4/7 = N/21, find the length of a side of a polygon similar to a known polygon). Use cross-multiplication as a method for solving such problems, understanding it as the multiplication of both sides of an equation by a multiplicative inverse.</td>
<td>1.3* Differeniate between rational and irrational numbers.</td>
</tr>
<tr>
<td>1.4* Decide when a rounded solution is called for and explain why such a solution may be appropriate. (N/A)</td>
<td>1.4 Determine the prime factors of all numbers through 50 and write the numbers as the product of their prime factors by using exponents to show multiples of a factor (e.g., 21 = 2 x 2 x 2 x 3 = 2³ x 3).</td>
<td>1.4 Calculate given percentages of quantities and solve problems involving discounts at sales, interest earned, and tips.</td>
<td></td>
</tr>
<tr>
<td>1.5* Identify on a number line the relative position of positive fractions, positive mixed numbers, and positive decimals to two decimal places.</td>
<td>1.5* Identify and represent on a number line fractions, decimals, mixed numbers, and positive and negative integers.</td>
<td>1.5* Calculate given percentages of quantities and solve problems involving discounts at sales, interest earned, and tips.</td>
<td>1.5* Know that every rational number is a solution may be appropriate.</td>
</tr>
<tr>
<td>2.0 Students extend their use and understanding of whole numbers to the addition and subtraction of simple decimals: (LO=11/136, 8%).</td>
<td>2.0 Students perform calculations and solve problems involving addition, subtraction and simple multiplication and division of fractions and decimals: (LO=19/137, 14%).</td>
<td>2.0 Students calculate and solve problems involving addition, subtraction, multiplication, and division: (LO=16/148, 11%).</td>
<td>2.0 Students use exponents, powers, and roots and use exponents in working with fractions: (LO=14/203, 7%).</td>
</tr>
<tr>
<td>2.1* Add, subtract, multiply, and divide with decimals; add with negative integers; subtract positive integers from negative integers; and verify the reasonableness of the results.</td>
<td>2.1* Add, subtract, multiply, and divide with decimals; add with negative integers; subtract positive integers from negative integers; and verify the reasonableness of the results.</td>
<td>2.1 Solve problems involving addition, subtraction, multiplication, and division of positive fractions and explain why a particular operation was used for a given situation.</td>
<td>2.1 Understand negative whole-number exponents. Multiply and divide expressions involving exponents with a common base. (1 CAHSEE) (1)</td>
</tr>
<tr>
<td>2.2 Round two-place decimals to one decimal or the nearest whole number and judge the reasonableness of the rounded answer.</td>
<td>2.2 Demonstrate proficiency with division, including division with positive decimals and long division with multi-digit divisors.</td>
<td>2.2 Demonstrate proficiency with division, including division with positive decimals and long division with multi-digit divisors.</td>
<td>2.2* Add and subtract fractions by using factoring to find common denominators. (1 CAHSEE)</td>
</tr>
<tr>
<td>2.3* Solve problems involving multiplication of multi-digit numbers by two-digit numbers.</td>
<td>2.3* Solve problems involving division of multi-digit numbers by one-digit numbers.</td>
<td>2.3* Solve problems involving multiplication of multi-digit numbers by two-digit numbers.</td>
<td>2.3* Multiply, divide, and simplify rational numbers by using exponent rules. (1 CAHSEE)</td>
</tr>
<tr>
<td>2.4* Calculate given percentages of quantities and solve problems involving discounts at sales, interest earned, and tips.</td>
<td>2.4* Determine the least common multiple of 20 or less, and express answers in the simplest form.</td>
<td>2.4* Determine the least common multiple of 20 or less, and express answers in the simplest form.</td>
<td>2.4 Use the inverse relationship between raising to a power and extracting the root of a perfect square integer; for an integer that is not square, determine without a calculator the two integers between which its square root lies and explain why. (1 CAHSEE)</td>
</tr>
<tr>
<td>3.0* Students solve problems involving addition, subtraction, multiplication, and division of whole numbers and understand the relationships among the operations: (LO=8/136, 6%).</td>
<td>3.1* Demonstrate an understanding of, and the ability to use, standard algorithms for the addition and subtraction of multi-digit numbers.</td>
<td>3.2* Demonstrate an understanding of, and the ability to use, standard algorithms for the addition and subtraction of multi-digit numbers.</td>
<td>2.5* Understand the meaning of the absolute value as the distance of the number from zero on a number line; and determine the absolute value of real numbers. (1 CAHSEE)</td>
</tr>
<tr>
<td>3.2* Demonstrate an understanding of, and the ability to use, standard algorithms for the addition and subtraction of multi-digit numbers.</td>
<td>3.2 Demonstrate an understanding of, and the ability to use, standard algorithms for the addition and subtraction of multi-digit numbers.</td>
<td>3.2 Demonstrate an understanding of, and the ability to use, standard algorithms for the addition and subtraction of multi-digit numbers.</td>
<td>3.2 Demonstrate an understanding of, and the ability to use, standard algorithms for the addition and subtraction of multi-digit numbers.</td>
</tr>
<tr>
<td>3.3* Solve problems involving multiplication of multi-digit numbers by two-digit numbers.</td>
<td>3.3* Solve problems involving multiplication of multi-digit numbers by two-digit numbers.</td>
<td>3.3* Solve problems involving multiplication of multi-digit numbers by two-digit numbers.</td>
<td>3.3* Solve problems involving multiplication of multi-digit numbers by two-digit numbers.</td>
</tr>
<tr>
<td>4.0 Students know how to factor small whole numbers: (LO=2/136, 1%).</td>
<td>4.1 Understand that many whole numbers break down in different ways (e.g., 12 = 4 x 3 = 2 x 6 = 2 x 2 x 3).</td>
<td>4.1 Understand that many whole numbers break down in different ways (e.g., 12 = 4 x 3 = 2 x 6 = 2 x 2 x 3).</td>
<td>4.1 Understand that many whole numbers break down in different ways (e.g., 12 = 4 x 3 = 2 x 6 = 2 x 2 x 3).</td>
</tr>
<tr>
<td>4.2* Know that numbers such as 2, 3, 5, 7, and 11 do not have any factors except 1 and themselves and that such numbers are called prime numbers.</td>
<td>4.2 Know that numbers such as 2, 3, 5, 7, and 11 do not have any factors except 1 and themselves and that such numbers are called prime numbers.</td>
<td>4.2 Know that numbers such as 2, 3, 5, 7, and 11 do not have any factors except 1 and themselves and that such numbers are called prime numbers.</td>
<td>4.2 Know that numbers such as 2, 3, 5, 7, and 11 do not have any factors except 1 and themselves and that such numbers are called prime numbers.</td>
</tr>
</tbody>
</table>

CA Standards Test (CST) = # of Questions/Total # Questions Learning Objectives (LO) = # of LO/Total # of LO *Emphasized standard

DataWorks Educational Research (800) 495-1550 www.dataworksed.com
<table>
<thead>
<tr>
<th>Grade</th>
<th>CST</th>
<th>LO</th>
<th>Mathematics: Algebra and Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td>1.0 Students sort and classify objects: (LO=4/43, 9%)</td>
<td>1.0 Students model, represent, and interpret number relationships to create and solve problems involving addition and subtraction: (LO=12/84, 14%)</td>
</tr>
<tr>
<td></td>
<td>2nd (CST=6/65 or 9%)</td>
<td>1.1* Identify, sort, and classify objects by attribute and identify objects that do not belong to a particular group (e.g., all these balls are green, those are red).</td>
<td>1.0 Students select appropriate symbols, operations, and properties to represent, describe, simplify, and solve simple number relationships: (LO=12/112, 11%)</td>
</tr>
<tr>
<td></td>
<td>3rd (CST= 12/65, 18%)</td>
<td>1.2 Relate problem situations to number sentences involving addition and subtraction. (1)</td>
<td>1.1* Represent relationships of quantities in the form of mathematical expressions, equations, or inequalities. (4)</td>
</tr>
<tr>
<td></td>
<td>4th (CST= 18/65, 28%)</td>
<td>1.3 Solve addition and subtraction problems by using data from simple charts, picture graphs, and number sentences. (1)</td>
<td>1.2 Solve problems involving numeric equations or inequalities. (1)</td>
</tr>
<tr>
<td>1st</td>
<td></td>
<td>1.0 Students use number sentences with operational symbols and expressions to solve problems: (LO=9/91, 10%)</td>
<td>1.3 Select appropriate operational and relational symbols to make an expression true (e.g., if 4 __ 3 = 12, what operational symbol goes in the blank?). (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1 Write and solve number sentences from problem situations that express relationships involving addition and subtraction.</td>
<td>1.4 Express simple unit conversions in symbolic form (e.g., __ inches = __ feet x 12). (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2 Understand the meaning of the symbols +, -, =.</td>
<td>1.5 Recognize and use the commutative and associative properties of multiplication (e.g., if 5 x 7 = 35, then what is 7 x 5? And if 5 x 7 x 3 = 105, then what is 7 x 3 x 5?). (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 Create problem situations that might lead to given number sentences involving addition and subtraction.</td>
<td>2.0 Students represent simple functional relationships: (LO=3/112, 3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0 Students use and interpret variables, mathematical symbols, and properties to write and simplify expressions and sentences: (LO=9/136, 7%)</td>
<td>2.1* Solve simple problems involving a functional relationship between two quantities (e.g., find the total cost of multiple items given the cost per unit). (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1 Use letters, boxes, or other symbols to stand for any number in simple expressions or equations (e.g., demonstrate an understanding and the use of the concept of a variable). (1)</td>
<td>2.2 Extend and recognize a linear pattern by its rules (e.g., the number of legs on a given number of horses may be calculated by counting by 4s or by multiplying the number of horses by 4). (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2* Interpret and evaluate mathematical expressions that now use parentheses. (5)</td>
<td>2.0* Students know how to manipulate equations: (LO=4/136, 3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3* Use parentheses to indicate which operation to perform first when writing expressions containing more than two terms and different operations. (3)</td>
<td>2.1* Know and understand that equals added to equals are equal. (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4 Use and interpret formulas (e.g., area = length x width or A = lw) to answer questions about quantities and their relationships. (1)</td>
<td>2.2* Know and understand that equals multiplied by equals are equal. (3)</td>
</tr>
</tbody>
</table>
Mathematics: Algebra and Functions

<table>
<thead>
<tr>
<th>5th (CST=17/65, 26%)</th>
<th>6th (CST= 19/65, 29%)</th>
<th>7th (CST=25/65, 38%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Students use variables in simple expressions, compute the value of the expression for specific values of the variable, and plot and interpret the results: (LO=13/137, 9%)</td>
<td>1.0 Students write verbal expressions and sentences as algebraic expressions and equations; they evaluate algebraic expressions, solve simple linear equations, and graph and interpret their results: (LO=11/148, 7%)</td>
<td>1.0 Students express quantitative relationships by using algebraic terminology, expressions, equations, inequalities, and graphs: (17 items CAHSEE) (LO=16/203, 8%)</td>
</tr>
<tr>
<td>1.1 Use information taken from a graph or equation to answer questions about a problem situation. (1)</td>
<td>1.1* Write and solve one-step linear equations in one variable. (6)</td>
<td>1.1 Use variables and appropriate operations to write an expression, an equation, an inequality, or a system of equations or inequalities that represents a verbal description (e.g., three less than a number, half as large as area A). (2 CAHSEE) (1)</td>
</tr>
<tr>
<td>1.2 Use a letter to represent an unknown number; write and evaluate simple algebraic expressions in one variable by substitution. (6)</td>
<td>1.2 Write and evaluate an algebraic expression for a given situation, using up to three variables. (1)</td>
<td>1.2 Use the correct order of operations to evaluate algebraic expressions such as 3(2x + 5)^2. (1 CAHSEE) (1)</td>
</tr>
<tr>
<td>1.3 Know and use the distributive property in equations and expressions with variables. (4)</td>
<td>1.3 Apply algebraic order of operations and the commutative, associative, and distributive properties to evaluate expressions; and justify each step in the process. (1)</td>
<td>1.3* Simplify numerical expressions by applying properties of rational numbers (e.g., identity, inverse, distributive, associative, commutative) and justify the process used. (5)</td>
</tr>
<tr>
<td>1.4* Identify and graph ordered pairs in the four quadrants of the coordinate plane. (4)</td>
<td>1.4 Solve problems manually by using the correct order of operations or by using a scientific calculator. (1)</td>
<td>1.4 Use algebraic terminology (e.g., variable, equation, term, coefficient, inequality, and expression, constant) correctly. (1/3)</td>
</tr>
<tr>
<td>1.5* Solve problems involving linear functions with integer values; write the equation; and graph the resulting ordered pairs of integers on a grid. (5)</td>
<td>1.5* Write and solve one-step linear equations in one variable. (6)</td>
<td>1.5 Represent quantitative relationships graphically and interpret the meaning of a specific part of a graph in the situation represented by the graph. (3 CAHSEE) (2/3)</td>
</tr>
<tr>
<td>2.0 Students interpret and evaluate expressions involving integer powers and simple roots: (LO=9/203, 4%)</td>
<td>2.1 Convert one unit of measurement to another (e.g., from feet to miles, from centimeters to inches). (1)</td>
<td>2.1 Interpret positive whole-number powers as repeated multiplication and negative whole-number powers as repeated division or multiplication by the multiplicative inverse. Simplify and evaluate expressions that include exponents. (1 CAHSEE) (2/3)</td>
</tr>
<tr>
<td>2.2* Demonstrate an understanding that rate is a measure of one quantity per unit value of another quantity. (6)</td>
<td>2.2 Solve problems involving rates, average speed, distance, and time. (1)</td>
<td>2.2 Multiply and divide monomials; extend the process of taking powers and extracting roots to monomials when the latter results in a monomial with an integer exponent. (1 HSEE)</td>
</tr>
<tr>
<td>3.0 Students graph and interpret linear and some nonlinear functions: (LO=8/203, 4%)</td>
<td>3.1 Graph functions of the form y = nx² and y = nx³ and use in solving problems. (1 CAHSEE)</td>
<td>3.0 Students graph and interpret linear and some nonlinear functions: (LO=8/203, 4%)</td>
</tr>
<tr>
<td>3.2 Express in symbolic form simple relationships arising from geometry. (1)</td>
<td>3.2 Express in symbolic form simple relationships arising from geometry. (1)</td>
<td>3.2* Graph linear functions, noting that the vertical change (change in y-value) per unit of horizontal change (change in x-value) is always the same and know that the ratio (“rise over run”) is called the slope of a graph. (2 CAHSEE) (2)</td>
</tr>
<tr>
<td>3.3* Graph linear functions, noting that the vertical change (change in y-value) per unit of horizontal change (change in x-value) is always the same and know that the ratio (“rise over run”) is called the slope of a graph. (2 CAHSEE) (2)</td>
<td>3.3 Plot the values from the volumes of three-dimensional shapes for various values of the edge lengths (e.g., cubes with varying edge lengths or a triangle prism with a fixed height and an equilateral triangle base of varying lengths). (1/3)</td>
<td>3.3* Plot the values of quantities whose ratios are always the same (e.g., cost to the number of an item, feet to inches, circumference to diameter of a circle). Fit a line to the plot and understand that the slope of the line equals the quantities. (1CAHSEE) (2)</td>
</tr>
<tr>
<td>4.0 Students solve simple linear equations and inequalities over the rational numbers; (LO=9/203, 4%)</td>
<td>4.0* Students solve simple linear equations and inequalities over the rational numbers; (LO=9/203, 4%)</td>
<td>4.0* Students solve simple linear equations and inequalities over the rational numbers; (LO=9/203, 4%)</td>
</tr>
<tr>
<td>4.1* Solve two-step linear equations and inequalities in one variable over the rational numbers, interpret the solution or solutions in the context from which they arose, and verify the reasonableness of the results. (3 CAHSEE) (5)</td>
<td>4.1 Solve two-step linear equations and inequalities in one variable over the rational numbers, interpret the solution or solutions in the context from which they arose, and verify the reasonableness of the results. (3 CAHSEE) (5)</td>
<td>4.1 Solve two-step linear equations and inequalities in one variable over the rational numbers, interpret the solution or solutions in the context from which they arose, and verify the reasonableness of the results. (3 CAHSEE) (5)</td>
</tr>
<tr>
<td>4.2 Solve multi-step problems involving rate, average speed, distance, and time or a direct variation. (2 CAHSEE) (5)</td>
<td>4.2* Solve multi-step problems involving rate, average speed, distance, and time or a direct variation. (2 CAHSEE) (5)</td>
<td>4.2 Solve multi-step problems involving rate, average speed, distance, and time or a direct variation. (2 CAHSEE) (5)</td>
</tr>
</tbody>
</table>

CA Standards Test (CST) = # of Questions/Total # Questions Learning Objectives (LO) = # of LO/Total # of LO *Emphasized standard

DataWorks Educational Research (800) 495-1550 www.dataworks-ed.com
Mathematics: Measurement and Geometry

<table>
<thead>
<tr>
<th>K</th>
<th>1st</th>
<th>2nd (CST= 14/65 or 22%)</th>
<th>3rd (CST= 16/65 or 25%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0* Students understand the concept of time and units to measure it; they understand that objects have properties, such as length, weight, and capacity, and that comparisons may be made by referring to those properties: (LO=7/43, 16%)</td>
<td>1.0 Students use direct comparison and nonstandard units to describe the measurements of objects: (LO=8/91, 9%)</td>
<td>1.0 Students understand that measurement is accomplished by identifying a unit of measure, iterating (repeating) that unit, and comparing it to the item to be measured: (LO=9/84, 11%)</td>
<td>1.0 Students choose and use appropriate units and measurement tools to quantify the properties of objects: (LO=15/112, 13%)</td>
</tr>
<tr>
<td>1.1 Compare the length, weight, and volume of two or more objects by using direct comparison or a non-standard unit.</td>
<td>1.1* Students understand the concept of comparing it to the item to be measured:</td>
<td>1.1 Measure the length of objects by iterating (repeating) a nonstandard or standard unit. (1)</td>
<td>1.1 Choose the appropriate tools and units (metric and U.S.) and estimate and measure the length, liquid volume, and weight/mass of given objects. (1)</td>
</tr>
<tr>
<td>1.2 Tell time to the nearest half-hour and relate time to events (e.g., before/after, shorter/longer).</td>
<td>1.2* Students identify common geometric figures, classify them by common attributes, and describe their relative position or their location in space: (LO=23/91, 25%)</td>
<td>1.2 Use different units to measure the same object and predict whether the measure will be greater or smaller when a different unit is used. (1)</td>
<td>1.2* Estimate or determine the area and volume of solid figures by covering them with squares or by counting the number of cubes that would fill them. (3)</td>
</tr>
<tr>
<td>1.3 Identify and describe plane and solid geometric objects by common attributes, such as color, position, shape, size, roundness, or number of corners, and explain which attributes are being used for classification.</td>
<td>1.3* Measure the length of an object to the nearest inch and/or centimeter. (3)</td>
<td>1.3* Measure the length of an object to the nearest inch and/or centimeter. (3)</td>
<td>1.3* Find the perimeter of a polygon with integer sides. (3)</td>
</tr>
<tr>
<td>1.4 Give and follow directions about location.</td>
<td>2.0 Students identify and describe the attributes of common figures in the plane and of common objects in space: (LO=6/84, 7%)</td>
<td>2.0* Students identify and describe the attributes of common figures in the plane and of common objects in space: (LO=6/84, 7%)</td>
<td>1.4 Carry out simple unit conversions within a system of measurement (e.g., centimeters and meters, hours and minutes). (1)</td>
</tr>
<tr>
<td>2.1 Identify, describe, and compare triangles, rectangles, squares, and circles, including the faces of three-dimensional objects.</td>
<td>2.1* Describe and classify polygonal planes with equal angles and sides for the isosceles triangle, three equal sides for the equilateral triangle, right angle for the right triangle. (2)</td>
<td>2.1* Describe and classify polygonal planes with equal angles and sides for the isosceles triangle, three equal sides for the equilateral triangle, right angle for the right triangle. (2)</td>
<td>2.0 Students describe and compare the attributes of plane and solid geometric figures and use their understanding to show relationships and solve problems: (LO=11/112, 10%)</td>
</tr>
<tr>
<td>2.2 Classify familiar plane and solid objects by common attributes, such as color, position, shape, size, roundness, or number of corners, and explain which attributes are being used for classification.</td>
<td>2.2* Identify attributes of triangles (e.g., two equal sides for the isosceles triangle, three equal sides for the equilateral triangle, right angle for the right triangle). (2)</td>
<td>2.2* Identify attributes of triangles (e.g., two equal sides for the isosceles triangle, three equal sides for the equilateral triangle, right angle for the right triangle). (2)</td>
<td>2.2* Identify attributes of quadrilaterals (e.g., parallel sides for the parallelogram, right angles for the rectangle, equal sides and right angles for the square). (2)</td>
</tr>
<tr>
<td>2.3 Go and follow directions about location.</td>
<td>2.4 Arrange and describe objects in space by proximity, position, and direction (e.g., near, far, below, above, up, down, behind, in front of, next to, left or right of).</td>
<td>2.4 Identify right angles in geometric figures or in appropriate objects and determine whether other angles are greater or less than a right angle. (2/3)</td>
<td>2.4 Identify right angles in geometric figures or in appropriate objects and determine whether other angles are greater or less than a right angle. (2/3)</td>
</tr>
<tr>
<td>2.4 Arrange and describe objects in space by proximity, position, and direction (e.g., near, far, below, above, up, down, behind, in front of, next to, left or right of).</td>
<td>2.5 Identify, describe, and classify common three-dimensional geometric objects (e.g., cube, rectangular solid, sphere, prism, pyramid, cone, cylinder). (2/3)</td>
<td>2.5 Identify, describe, and classify common three-dimensional geometric objects (e.g., cube, rectangular solid, sphere, prism, pyramid, cone, cylinder). (2/3)</td>
<td>2.6* Identify common solid objects that are the components needed to make a more complex solid object. (2/3)</td>
</tr>
<tr>
<td>2.5 Identify, describe, and classify common three-dimensional geometric objects (e.g., cube, rectangular solid, sphere, prism, pyramid, cone, cylinder). (2/3)</td>
<td>2.6* Identify common solid objects that are the components needed to make a more complex solid object. (2/3)</td>
<td>2.6 Identify common solid objects that are the components needed to make a more complex solid object. (2/3)</td>
<td>2.6 Identify common solid objects that are the components needed to make a more complex solid object. (2/3)</td>
</tr>
</tbody>
</table>
Mathematics: Measurement and Geometry

4th (CST= 12/65, 18%)
1.0 Students understand perimeter and area; (LO=12/136,9%)
1.1 Measure the area of rectangular shapes by using appropriate units, such as square centimeter (cm²), square meter (m²), square kilometer (km²), square inch (in²), square yard (yd²), or square mile (mi²). (1/2)
1.2 Recognize that rectangles that have the same area can have different perimeters. (1/2)
1.3 Understand that rectangles that have the same perimeter can have different areas. (1/2)
1.4 Understand and use formulas to solve problems involving perimeters and areas of rectangles and squares. Use those formulas to find the areas of more complex figures by dividing the figures into basic shapes. (1/2)
2.0 Students use two-dimensional coordinate grids to represent points and graph lines and simple figures; (LO=3/136, 2%)
2.1* Draw the points corresponding to linear relationships on graph paper (e.g., draw 10 points on the graph of the equation y = 3x and connect them by using a straight line). (2)
2.2* Understand that the length of a horizontal line segment equals the difference of the x-coordinates. (2)
2.3* Understand that the length of a vertical line segment equals the difference of the y-coordinates. (1/3)
2.4* Differentiate between, and use appropriate units of measures for, two- and three-dimensional objects (i.e., find the perimeter, area, or volume). (1)

5th (CST= 15/65, 23%)
1.0 Students understand and compute the volumes and areas of simple objects; (LO=13/137, 9%)
1.1* Derive and use the formula for the area of a triangle and of a parallelogram by comparing it with the formula for the area of a rectangle (i.e., two of the same triangles make a parallelogram with twice the area; a parallelogram is compared with a rectangle of the same area by cutting and pasting a right triangle on the parallelogram). (2 ½)
1.2* Construct a cube and rectangular box from two-dimensional patterns and use these patterns to compute the surface area for these objects. (½)
1.3* Understand the concept of volume and use the appropriate units in common measuring systems (i.e., cubic centimeter [cm³], cubic meter [m³], cubic inch [in³], cubic yard [yd³]) to compute the volume of rectangular solids. (3)
1.4 Differentiate between, and use appropriate units of measures for, two- and three-dimensional objects (i.e., find the perimeter, area, or volume). (1)

6th (CST= 10/65, 15%)
1.0 Students deepen their understanding of the measure-ment of plane and solid shapes and use this understanding to solve problems; (LO=15/148, 10%)
1.1* Understand the concept of a constant such as π; know the formulas for the circumference and area of a circle. (3)
1.2 Know common estimates of π (3.14; 22/7) and use these values to estimate and calculate the circumference and the area of circles; compare with actual measurements. (1/2)
1.3 Know and use the formulas for the volume of triangular prisms and cylinders (area of base x height); compare these formulas and explain the similarity between them and the formula for the volume of a rectangular solid. (1/2)
2.0 Students compute the perimeter, area, and volume of common geometric objects and use the results to find measures of less common objects. They know how perimeter, area, and volume are affected by changes of scale: (LO=15/203, 7%)
2.1 Use formulas routinely for finding the perimeter and area of basic two-dimensional figures and the surface area and volume of basic three-dimensional figures, including rectangles, parallelograms, trapezoids, squares, triangles, circles, prisms, and cylinders. (3 CAHSEE) (1/3)
2.2 Estimate and compute the area of more complex or irregular two- and three-dimensional figures by breaking the figures down into more basic geometric objects. (2 CAHSEE) (1/3)
2.3 Compute the length of the perimeter, the surface area of the faces, and the volume of a three-dimensional object built from rectangular solids. Understand that when the lengths of all dimensions are multiplied by a scale factor, the surface area is multiplied by the square of the scale factor and the volume is multiplied by the cube of the scale factor. (1 CAHSEE) (1/3)
2.4 Relate the changes in measurement with a change of scale to the units used (e.g., square inches, cubic feet) and to conversions between units (1 square foot = 144 square inches or [1 ft²] = [144 in²], 1 cubic inch is approximately 16.38 cubic centimeters or [1 in³] = [16.38 cm³]). (1 CAHSEE) (1/3)

7th (CST= 13/65, 20%)
1.0 Students choose appropriate units of measure and use ratios to convert within and between measurement systems to solve problems; (17 items HSEE) (LO=18/203, 9%)
1.1 Compare weights, capacities, geometric measures, times, and temperatures within and between measurement systems (e.g., miles per hour and feet per second, cubic inches to cubic centimeters). (2 CAHSEE) (2/3)
1.2 Construct and read drawings and models made to scale. (1 CAHSEE) (1/3)
1.3* Use measures expressed as rates (e.g., speed, density) and measures expressed as products (e.g., person-days) to solve problems; check the units of the solutions; and use dimensional analysis to check the reasonableness of the answer. (2 CAHSEE) (3)
2.0 Students understand perimeter and area: (LO=12/136,9%)
1.1 Measure the area of rectangular shapes by using appropriate units, such as square centimeter (cm²), square meter (m²), square kilometer (km²), square inch (in²), square yard (yd²), or square mile (mi²). (1/2)
1.2 Recognize that rectangles that have the same area can have different perimeters. (1/2)
1.3 Understand that rectangles that have the same perimeter can have different areas. (1/2)
1.4 Understand and use formulas to solve problems involving perimeters and areas of rectangles and squares. Use those formulas to find the areas of more complex figures by dividing the figures into basic shapes. (1/2)
2.0 Students use two-dimensional coordinate grids to represent points and graph lines and simple figures; (LO=3/136, 2%)
2.1* Draw the points corresponding to linear relationships on graph paper (e.g., draw 10 points on the graph of the equation y = 3x and connect them by using a straight line). (2)
2.2* Understand that the length of a horizontal line segment equals the difference of the x-coordinates. (2)
2.3* Understand that the length of a vertical line segment equals the difference of the y-coordinates. (1/3)
2.4* Differentiate between, and use appropriate units of measures for, two- and three-dimensional objects (i.e., find the perimeter, area, or volume). (1)

CA Standards Test (CST) = # of Questions/Total # Questions Learning Objectives (LO) = # of LO/Total # of LO *Emphasized standard

DataWorks Educational Research (800) 495-1550 www.dataworks-ed.com
<table>
<thead>
<tr>
<th>Grade</th>
<th>CA Standards Test (CST)</th>
<th>Learning Objectives (LO)</th>
</tr>
</thead>
</table>
| 4th | CST= 12/65, 18% Cont. | 3.0 Students demonstrate an understanding of plane and solid geometric objects and use this knowledge to show relationships and solve problems: (LO=19/136, 14%)
3.1 Identify lines that are parallel and perpendicular. (1)
3.2 Identify the radius and diameter of a circle. (1)
3.3 Identify congruent figures. (1/3)
3.4 Identify figures that have bilateral and bilateral symmetries. (1/3)
3.5 Know the definitions of a right angle, an acute angle, and an obtuse angle. Understand that 90°, 180°, 270°, and 360° are associated, respectively, with 1/4, 1/2, 3/4, and full turns. (1/3) |
| 5th | CST= 15/65, 23% Cont. | 2.0 Students identify, describe, and classify the properties of, and the relationships between, plane and solid geometric figures: (LO=20/137, 15%)
2.1 Measure, identify, and draw angles, perpendicular and parallel lines, rectangles, and triangles by using appropriate tools (e.g., straight-edge, ruler, compass, protractor, drawing software). (3)
2.2 Know that the sum of the angles of any triangle is 180° and the sum of the angles of any quadrilateral is 360° and use this information to solve problems. (4)
2.3 Visualize and draw 2-dimensional views of three-dimensional objects made from rectangular solids. (1) |
| 6th | CST= 10/65, 15% Cont. | 2.0 Students identify and describe the properties of two-dimensional figures: (LO=13/148, 9%)
2.1 Identify angles as vertical, adjacent, complementary, or supplementary and provide descriptions of these terms. (1)
2.2 Use the properties of complementary and supplementary angles and the sum of the angles of a triangle to solve problems involving an unknown angle. (4)
2.3 Draw quadrilaterals and triangles from given information about them (e.g., a quadrilateral having equal sides but no right angles, a right isosceles triangle). (1) |
| 7th | CST= 13/65, 20% Cont. | 3.0 Students know the Pythagorean theorem and deepen their understanding of plane and solid geometric shapes by constructing figures that meet given conditions and by identifying attributes of figures: (LO=23/203, 11%)
3.1 Identify and construct basic elements of geometric figures (e.g., altitudes, mid-points, diagonals, angle bisectors, and perpendicular bisectors; central angles, radii, diameters, and chords of circles) by using a compass and straightedge. (1/3)
3.2 Understand and use coordinate graphs to plot simple figures, determine lengths and areas related to them, and determine their image under translations and reflections. (2 CAHSEE) (1/3)
3.3 Know and understand the Pythagorean theorem and its converse and use it to find the length of the missing side of a right triangle and the lengths of other line segments and, in some situations, empirically verify the Pythagorean theorem by direct measurement. (2 CAHSEE) (4)
3.4 Demonstrate an understanding of conditions that indicate two geometrical figures are congruent and what congruence means about the relationships between the sides and angles of the two figures. (1 CAHSEE) (2)
3.5 Construct two-dimensional patterns for three-dimensional models, such as cylinders, prisms, and cones. (N/A)
3.6 Identify elements of 3-dimensional geometric objects (e.g., diagonals of rectangular solids) and describe how two or more objects are related in space (e.g., skew lines, the possible ways three planes might intersect). (1) |
Mathematics: Statistics, Data Analysis, and Probability

K

1.0 Students collect information about objects and events in their environment: (LO=6/43, 14%)

1.1 Pose information questions; collect data; and record the results using objects, pictures and picture graphs.

1.2* Identify, describe, and extend simple patterns (such as circles or triangles) by referring to their shapes, sizes, or colors.

1st

1.0 Students organize, represent, and compare data by category on simple graphs and charts: (LO=11/91, 12%)

1.1 Sort objects and data by common attributes and describe the categories.

1.2 Represent and compare data (e.g., largest, smallest, most often, least often) by using pictures, bar graphs, tally charts, and picture graphs.

1.3* Describe, extend, and explain ways to get to a next element in simple repeating patterns (e.g., rhythmic, numeric, color, and shape).

1.0* Students collect numerical data and record, organize, display, and interpret the data on bar graphs and other representations: (LO=5/84, 6%)

1.1 Record numerical data in systematic ways, keeping track of what has been counted. (2)

1.2 Represent the same data set in more than one way (e.g., bar graphs and charts with tallies). (2)

1.3 Identify features of data sets (range and mode). (2)

1.4 Ask and answer simple questions related to data representations. (1)

2.0* Students demonstrate an understanding of patterns and how patterns grow and describe them in general ways: (LO=5/84, 6%)

2.1 Recognize, describe, and extend patterns and determine a next term in linear patterns (e.g., 4, 8, 12 . . . ; the number of ears on one horse, two horses, three horses, four horses). (N/A)

2.2 Solve problems involving simple number patterns. (N/A)

2nd (CST= 7/65, 11%)

1.0* Students collect numerical data and record, organize, display, and interpret the data on bar graphs and other representations: (LO=5/84, 6%)

1.1 Record numerical data in systematic ways, keeping track of what has been counted. (2)

1.2 Represent the same data set in more than one way (e.g., bar graphs and charts with tallies). (2)

1.3 Identify features of data sets (range and mode). (2)

1.4 Ask and answer simple questions related to data representations. (1)

3rd (CST= 5/65, 8%)

1.0 Students conduct simple probability experiments by determining the number of possible outcomes and make simple predictions: (LO=9/112, 8%)

1.1 Identify whether common events are certain, likely, unlikely, or improbable. (1)

1.2* Record the possible outcomes for a simple event (e.g., tossing a coin and systematically keep track of the outcomes when the event is repeated many times). (2)

1.3* Summarize and display the results of probability experiments in a clear and organized way (e.g., use a bar graph or a line plot). (2)

1.4 Use the results of probability experiments to predict future events (e.g., use a line plot to predict the temperature forecast for the next day). (N/A)

2.0 Students make predictions for simple probability situations: (LO=3/136, 2%)

2.1 Represent all possible outcomes for a simple probability situation in an organized way (e.g., tables, grids, tree diagrams). (2/3)

2.2 Express outcomes of experimental probability situations verbally and numerically (e.g., 3 out of 4; 3/4). (2/3)

4th (CST= 4/65, 6%)

1.0 Students organize, represent, and interpret numerical and categorical data and clearly communicate their findings: (LO=10/136, 7%)

1.1 Formulate survey questions; systematically collect and represent data on a number line; and coordinate graphs, tables, and charts. (1)

1.2 Identify the mode(s) for sets of categorical data and the mode(s), median, and any apparent outliers for numerical data sets. (2/3)

1.3 Interpret one- and two-variable data graphs to answer questions about a situation. (1)

2.0 Students sort objects and create and describe patterns by numbers, shapes, sizes, rhythms, or colors: (LO=3/91, 3%)

2.1* Describe, extend, and explain ways to get to a next element in simple repeating patterns (e.g., rhythmic, numeric, color, and shape).
<table>
<thead>
<tr>
<th>Grade</th>
<th>CST</th>
<th>Learning Objectives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5th</td>
<td>4/65, 6%</td>
<td>1.0 Students display, analyze, compare, and interpret different data sets, including data sets of different sizes: (LO=15/137, 11%)
1.1 Know the concepts of mean, median, and mode; compute and compare simple examples to show that they may differ. (1/3)
1.2 Organize and display single-variable data in appropriate graphs and representations (e.g., histogram, circle graphs) and explain which types of graphs are appropriate for various data sets. (1/3)
1.3 Use fractions and percentages to compare data sets of different sizes. (1/3)
1.4* Identify ordered pairs of data from a graph and interpret the meaning of the data in terms of the situation depicted by the graph. (2 ½)
1.5* Know how to write ordered pairs correctly; for example, (x, y). (½)</td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td>11/65, 17%</td>
<td>1.0 Students compute and analyze statistical measurements for data sets: (LO=7/148, 5%) (8 CAHSEE)
1.1 Compute the range, mean, median, and mode of data sets. (3 CAHSEE) (1/3)
1.2 Understand how additional data added to data sets may affect these computations of measures of central tendency. (1/3)
1.3 Understand how the inclusion or exclusion of outliers affects measures of central tendency. (1/3)
1.4 Know why a specific measure of central tendency (mean, median, mode) provides the most useful information in a given context. (N/A)
2.0 Students use data samples of a population and describe the characteristics and limitations of the samples: (LO=11/148, 7%)
2.1 Compare different samples of a population with the data from the entire population and identify a situation in which it makes sense to use a sample. (N/A)
2.2* Identify different ways of selecting a sample (e.g., convenience sampling, responses to a survey, random sampling) and which method makes a sample more representative for a population. (3)
2.3* Analyze data displays and explain why the way in which the question was asked might have influenced the results obtained and why the way in which the results were displayed might have influenced the conclusions reached. (N/A)
2.4* Identify data that represent sampling errors and explain why the sample (and the display) might be biased. (N/A)
2.5* Identify claims based on statistical data and, in simple cases, evaluate the validity of the claims. (1 CAHSEE) (1/3)
3.0 Students determine theoretical and experimental probabilities and use these to make predictions about events: (LO=12/148, 8%)
3.1* Represent all possible outcomes for compound events in an organized way (e.g., tables, grids, tree diagrams) and express the theoretical probability of each outcome. (3) (1 CAHSEE)
3.2 Use data to estimate the probability of future events (e.g., batting averages or number of accidents per mile driven). (N/A)
3.3* Represent probabilities as ratios, proportions, decimals between 0 and 1, and percentages between 0 and 100 and verify that the probabilities computed are reasonable; know that if P is the probability of an event, 1-P is the probability of an event not occurring. (2 CAHSEE) (3)
3.4 Understand that the probability of either of two disjoint events occurring is the sum of the two individual probabilities and that the probability of one event following another, in independent trials, is the product of the two probabilities. (1/3)
3.5* Understand the difference between independent and dependent events. (1 CAHSEE) (1/3)</td>
<td></td>
</tr>
<tr>
<td>7th</td>
<td>5/65, 8%</td>
<td>1.0 Students collect, organize, and represent data sets that have one or more variables and identify relationships among variables within a data set by hand and through the use of an electronic spreadsheet software program: (4 items CAHSEE) (LO=17/203, 8%)
1.1 Know various forms of display for data sets, including a stem-and-leaf plot or box-and-whisker plot; use the forms to display a single set of data or to compare two sets of data. (2 CAHSEE) (1)
1.2 Represent two numerical variables on a scatter-plot and informally describe how the data points are distributed and any apparent relationship that exists between the two variables (e.g., between time spent on homework and grade level), (2 CAHSEE) (1)
1.3* Understand the meaning of, and be able to compute, the minimum, the lower quartile, the median, the upper quartile, and the maximum of a data set. (3)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1.0 Students make decisions about how to set up a problem: (LO=5/43, 12%)</td>
<td>1.0 Students make decisions about how to set up a problem: (LO=4/84, 5%)</td>
<td>1.0 Students make decisions about how to approach problems: (LO=7/112, 6%)</td>
<td></td>
</tr>
<tr>
<td>1.1 Determine the approach, materials, and strategies to be used. 1.2 Use tools and strategies, such as manipulatives or sketches, to model problems.</td>
<td>1.1 Determine the approach, materials, and strategies to be used.</td>
<td>1.1 Analyze problems by identifying relationships, distinguishing relevant from irrelevant information, sequencing and prioritizing information, and observing patterns.</td>
<td></td>
</tr>
<tr>
<td>2.0 Students solve problems in reasonable ways and justify their reasoning: (LO=4/43, 9%)</td>
<td>2.0 Students solve problems and justify their reasoning: (LO=4/91, 4%)</td>
<td>1.2 Determine when and how to break a problem into simpler parts.</td>
<td></td>
</tr>
<tr>
<td>2.1 Explain the reasoning used with concrete objects and/or pictorial representations. 2.2 Make precise calculations and check the validity of the results in the context of the problem.</td>
<td>2.1 Explain the reasoning used and justify the procedures selected.</td>
<td>2.0 Students use strategies, skills, and concepts in finding solutions: (LO=16/112, 14%)</td>
<td></td>
</tr>
<tr>
<td>3.0 Students note connections between one problem and another.</td>
<td>2.2 Make precise calculations and check the validity of the results from the context of the problem.</td>
<td>2.1 Use estimation to verify the reasonableness of calculated results. (E)</td>
<td></td>
</tr>
<tr>
<td>1.0 Students make decisions about how to approach problems: (LO=5/112, 4%)</td>
<td>3.0 Students note connections between one problem and another.</td>
<td>2.2 Apply strategies and results from simpler problems to more complex problems. (E)</td>
<td></td>
</tr>
<tr>
<td>1.1 Determine the approach, materials, and strategies to be used.</td>
<td>2.3 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning. (E)</td>
<td>2.4 Express the solution clearly and logically by using the appropriate mathematical notation and terms and clear language; support solutions with evidence in both verbal and symbolic work. (E)</td>
<td></td>
</tr>
<tr>
<td>1.2 Use tools, such as manipulatives or sketches, to model problems.</td>
<td>2.4 Express the solution clearly and logically by using the appropriate mathematical notation and terms and clear language; support solutions with evidence in both verbal and symbolic work. (E)</td>
<td>2.5 Indicate the relative advantages of exact and approximate solutions to problems and give answers to a specified degree of accuracy. (E)</td>
<td></td>
</tr>
<tr>
<td>2.0 Students solve problems and justify their reasoning: (LO=4/91, 4%)</td>
<td>2.6 Make precise calculations and check the validity of the results from the context of the problem. (E)</td>
<td>2.6 Make precise calculations and check the validity of the results from the context of the problem. (E)</td>
<td></td>
</tr>
<tr>
<td>2.1 Explain the reasoning used and justify the procedures selected.</td>
<td>3.0 Students move beyond a particular problem by generalizing to other situations: (LO=5/112, 4%)</td>
<td>3.0 Students move beyond a particular problem by generalizing to other situations: (LO=5/112, 4%)</td>
<td></td>
</tr>
<tr>
<td>2.2 Make precise calculations and check the validity of the results from the context of the problem.</td>
<td>3.1 Evaluate the reasonableness of the solution in the context of the original situation.</td>
<td>3.1 Evaluate the reasonableness of the solution in the context of the original situation. (E)</td>
<td></td>
</tr>
<tr>
<td>3.0 Students note connections between one problem and another.</td>
<td>3.2 Note the method of deriving the solution and demonstrate a conceptual understanding of the derivation by solving similar problems. (E)</td>
<td>3.2 Note the method of deriving the solution and demonstrate a conceptual understanding of the derivation by solving similar problems. (E)</td>
<td></td>
</tr>
<tr>
<td>3.3 Develop generalizations of the results obtained and apply them in other circumstances. (E)</td>
<td>3.3 Develop generalizations of the results obtained and apply them in other circumstances. (E)</td>
<td>3.3 Develop generalizations of the results obtained and apply them in other circumstances. (E)</td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td>5th</td>
<td>6th</td>
<td>7th</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1.0 Students make decisions about how to approach problems: (LO=7/136, 5%)</td>
<td>1.0 Students make decisions about how to approach problems: (LO=7/137, 5%)</td>
<td>1.0 Students make decisions about how to approach problems: (LO=9/148, 6%)</td>
<td>1.0 Students make decisions about how to approach problems: (8 items plus integrated into other strands CAHSEE) (LO=9/203, 4%)</td>
</tr>
<tr>
<td>1.1 Analyze problems by identifying relationships, distinguishing relevant from irrelevant information, and observing patterns. (E)</td>
<td>1.1 Analyze problems by identifying relationships, distinguishing relevant from irrelevant information, and observing patterns. (E)</td>
<td>1.1 Analyze problems by identifying relationships, distinguishing relevant from irrelevant information, identifying missing information, sequencing and prioritizing patterns. (2 CAHSEE) (E)</td>
<td>1.1 Analyze problems by identifying relationships, distinguishing relevant from irrelevant information, identifying missing information, sequencing and prioritizing patterns. (E)</td>
</tr>
<tr>
<td>1.2 Determine when and how to break a problem into simpler parts. (E)</td>
<td>1.2 Determine when and how to break a problem into simpler parts. (E)</td>
<td>1.2 Formulate and justify mathematical conjectures based on a general description of the mathematical question or problem posed. (E)</td>
<td>1.2 Determine when and how to break a problem into simpler parts. (E)</td>
</tr>
<tr>
<td>2.0 Students use strategies, skills, and concepts in finding solutions: (LO=16/136, 12%)</td>
<td>2.0 Students use strategies, skills, and concepts in finding solutions: (LO=19/137, 14%)</td>
<td>2.0 Students use strategies, skills, and concepts in finding solutions: (LO=21/148, 14%)</td>
<td>2.0 Students use strategies, skills, and concepts in finding solutions: (LO=25/203, 12%)</td>
</tr>
<tr>
<td>2.1 Use estimation to verify the reasonableness of calculated results. (E)</td>
<td>2.1 Use estimation to verify the reasonableness of calculated results. (E)</td>
<td>2.1 Use estimation to verify the reasonableness of calculated results. (E)</td>
<td>2.1 Use estimation to verify the reasonableness of calculated results. (2 CAHSEE) (E)</td>
</tr>
<tr>
<td>2.2 Apply strategies and results from simpler problems to more complex problems. (E)</td>
<td>2.2 Apply strategies and results from simpler problems to more complex problems. (E)</td>
<td>2.2 Apply strategies and results from simpler problems to more complex problems. (E)</td>
<td>2.2 Apply strategies and results from simpler problems to more complex problems. (E)</td>
</tr>
<tr>
<td>2.3 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning. (E)</td>
<td>2.3 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning. (E)</td>
<td>2.3 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning. (E)</td>
<td>2.3 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning. (E)</td>
</tr>
<tr>
<td>2.4 Express the solution clearly and logically by using the appropriate mathematical notation and terms and clear language; support solutions with evidence in both verbal and symbolic work. (E)</td>
<td>2.4 Express the solution clearly and logically by using the appropriate mathematical notation and terms and clear language; support solutions with evidence in both verbal and symbolic work. (E)</td>
<td>2.4 Express the solution clearly and logically by using the appropriate mathematical notation and terms and clear language; support solutions with evidence in both verbal and symbolic work. (E)</td>
<td>2.4 Express the solution clearly and logically by using the appropriate mathematical notation and terms and clear language; support solutions with evidence in both verbal and symbolic work. (E)</td>
</tr>
<tr>
<td>2.5 Indicate the relative advantages of exact and approximate solutions to problems and give answers to a specified degree of accuracy. (E)</td>
<td>2.5 Indicate the relative advantages of exact and approximate solutions to problems and give answers to a specified degree of accuracy. (E)</td>
<td>2.5 Indicate the relative advantages of exact and approximate solutions to problems and give answers to a specified degree of accuracy. (E)</td>
<td>2.5 Indicate the relative advantages of exact and approximate solutions to problems and give answers to a specified degree of accuracy. (E)</td>
</tr>
<tr>
<td>2.6 Make precise calculations and check the validity of the results from the context of the problem. (E)</td>
<td>2.6 Make precise calculations and check the validity of the results from the context of the problem. (E)</td>
<td>2.6 Make precise calculations and check the validity of the results from the context of the problem. (E)</td>
<td>2.6 Make precise calculations and check the validity of the results from the context of the problem. (E)</td>
</tr>
<tr>
<td>3.0 Students move beyond a particular problem by generalizing to other situations: (LO=5/136, 4%)</td>
<td>3.0 Students move beyond a particular problem by generalizing to other situations: (LO=5/137, 4%)</td>
<td>3.0 Students move beyond a particular problem by generalizing to other situations: (LO=5/148, 3%)</td>
<td>3.0 Students move beyond a particular problem by generalizing to other situations: (LO=5/203, 2%)</td>
</tr>
<tr>
<td>3.1 Evaluate the reasonableness of the solution in the context of the original situation. (E)</td>
<td>3.1 Evaluate the reasonableness of the solution in the context of the original situation. (E)</td>
<td>3.1 Evaluate the reasonableness of the solution in the context of the original situation. (E)</td>
<td>3.1 Evaluate the reasonableness of the solution in the context of the original situation. (E)</td>
</tr>
<tr>
<td>3.2 Note the method of deriving the solution and demonstrate a conceptual understanding of the derivation by solving similar problems. (E)</td>
<td>3.2 Note the method of deriving the solution and demonstrate a conceptual understanding of the derivation by solving similar problems. (E)</td>
<td>3.2 Note the method of deriving the solution and demonstrate a conceptual understanding of the derivation by solving similar problems. (E)</td>
<td>3.2 Note the method of deriving the solution and demonstrate a conceptual understanding of the derivation by solving similar problems. (E)</td>
</tr>
<tr>
<td>3.3 Develop generalizations of the results obtained and apply them in other circumstances. (E)</td>
<td>3.3 Develop generalizations of the results obtained and apply them in other circumstances. (E)</td>
<td>3.3 Develop generalizations of the results obtained and apply them in new problem situations. (E)</td>
<td>3.3 Develop generalizations of the results obtained and apply them in new problem situations. (E)</td>
</tr>
</tbody>
</table>

Mathematics: Mathematical Reasoning

DataWorks Educational Research (800) 495-1550 www.dataworks-ed.com
1.0 Students identify and use the arithmetic properties of subsets of integers and rational, irrational, and real numbers, including closure properties for the four basic arithmetic operations where applicable. (LO=9/120, 7%)
1.1 Students use properties of numbers to demonstrate whether assertions are true or false. (1/2)
2.0 Students understand and use such operations as taking the opposite, finding the reciprocal, taking a root, and raising to a fractional power. They understand and use the rules of exponents. (1 CAHSEE) (LO=10/120, 8%) (4)
3.0 Students solve equations and inequalities involving absolute values. (1CAHSEE) (1)
4.0 Students simplify expressions before solving linear equations and inequalities in one variable, such as 3(2x-5) + 4(x-2) = 12. 2 CAHSEE) (LO=9/120, 2%) (3)
5.0 Students solve multi-step problems, including word problems, involving linear equations and linear inequalities in one variable and provide justification for each step. (1 HSEE) (LO=9/120, 3%) Standards 6.0-9.0 (CST=14/65, 22%) (8)
6.0 Students graph a linear equation and compute the x- and y-intercepts (e.g., graph 2x + 6y = 4). They are also able to sketch the region defined by linear inequality (e.g., they sketch the region defined by 2x + 6y < 4). (2 CAHSEE) (LO=9/120, 3%) (4)
7.0 Students verify that a point lies on a line, given an equation of the line. Students are able to derive linear equations by using the point-slope formula. (1 CAHSEE) (LO=9/120, 2%) (4)
8.0 Students understand the concepts of parallel lines and perpendicular lines and how those slopes are related. Students are able to find the equation of a line perpendicular to a given line that passes through a given point. (1 CAHSEE) (LO=9/120, 3%) (1)
9.0 Students solve a system of two linear equations in two variables algebraically and are able to interpret the answer graphically. Students are able to solve a system of two linear inequalities in two variables and to sketch the solution sets. (1 CAHSEE) (LO=9/120, 3%) (5) (Standards 10.0, 11.0, 14.0, and 19.0-23.0) (CST=13/65, 20%)
10.0 Students add, subtract, multiply, and divide monomials and polynomials. Students solve multistep problems, including word problems, by using these techniques. (1 CAHSEE) (LO=9/120, 7%) (4)
11.0 Students apply basic factoring techniques to second- and simple third-degree polynomials. These techniques include finding a common factor for all terms in a polynomial, recognizing the difference of two squares, and recognizing perfect squares of binomials. (2) (LO=9/120, 8%) (2) (Standards 12.0, 13.0, and 15.0-18.0) (CST=13/65, 20%)
12.0 Students simplify fractions with polynomials in the numerator and denominator by factoring both and reducing them to the lowest terms. (LO=9/120, 2%) (3)
13.0 Students add, subtract, multiply, and divide rational expressions and functions. Students solve both computationally and conceptually challenging problems by using these techniques. (LO=9/120, 3%) (4)
14.0 Students solve a quadratic equation by factoring or completing the square. (LO=9/120, 3%) (3)
15.0 Students apply algebraic techniques to solve rate problems, work problems, and percent mixture problems. (1 CAHSEE) (LO=9/120, 3%) (4)
16.0 Students understand the concepts of a relation and a function, determine whether a given relation defines a function, and give pertinent information about given relations and functions. (LO=9/120, 4%) (1/2)
17.0 Students determine the domain of independent variables and the range of dependent variables defined by a graph, a set of ordered pairs, or a symbolic expression. (LO=9/120, 5%) (1)
18.0 Students determine whether a relation defined by a graph, a set of ordered pairs, or a symbolic expression is a function and justify the conclusion. (LO=9/120, 3%) (1/2)
19.0 Students know the quadratic formula and are familiar with its proof by completing the square. (LO=9/120, 2%) (2)
20.0 Students use the quadratic formula to find the roots of a second-degree polynomial and to solve quadratic equations. (LO=9/120, 2%) (3)
21.0 Students graph quadratic functions and know that their roots are the x-intercepts. (LO=9/120, 1%) (3)
22.0 Students use the quadratic formula or factoring techniques or both to determine whether the graph of a quadratic function will intersect the x-axis in zero, one, or two points. (LO=9/120, 3%) (1)
23.0 Students apply quadratic equations to physical problems, such as the motion of an object under the force of gravity. (LO=1/120, 1%) (3) (Standards 24.0-24.3) (CST = 1/65, 1%)
24.0 Students use and know simple aspects of a logical argument: (LO=9/120, 7%)
24.1 Students explain the difference between inductive and deductive reasoning and identify and provide examples of each. (1/3)
24.2 Students identify the hypothesis and conclusion in logical deduction. (1/3)
24.3 Students use counterexamples to show that an assertion is false and recognize that a single counterexample is sufficient to refute an assertion. (1/3)(Standards 25.0-25.3) (CST = 1 ¼ / 65, 2%)
25.0 Students use properties of the number system to judge the validity of results, to justify each step of a procedure, and to prove or disprove statements: (LO=17/120, 14%)
25.1 Students use properties of numbers to construct simple, valid arguments (direct and indirect) or, formulate counterexamples to, claimed assertions. (1/2)
25.2 Students judge the validity of an argument according to whether the properties of the real number system and the order of operations have been applied correctly at each step. (1/2)
25.3 Given a specific algebraic statement involving linear, quadratic, or absolute value expressions or equations or inequalities, students determine whether the statement is true sometimes, always, or never. (1/2)
Logic and Geometric Proofs (Standards 1.0 – 7.0) (CST=22/65, 34%)

1.0 Students demonstrate understanding by identifying and giving examples of undefined terms, axioms, theorems, and inductive and deductive reasoning. (LO =10/112, 9%)
2.0 Students write geometric proofs, including proofs by contradiction. (LO =1/112, 1%)
3.0 Students construct and judge the validity of a logical argument and give counterexamples to disprove a statement. (LO =3/112, 3%)
4.0 Students prove basic theorems involving congruence and similarity. (LO =2/112, 2%)
5.0 Students prove that triangles are congruent or similar, and they are able to use the concept of corresponding parts of congruent triangles. (LO =3/112, 3%)
6.0 Students know and are able to use the triangle inequality theorem. (LO =2/112, 2%)
7.0 Students prove and use theorems involving the properties of parallel lines cut by a transversal, the properties of quadrilaterals, and the properties of circles. (LO =6/112, 5%)

Volume and Area Formulas (Standards 8.0 – 11.0) (CST=11/65, 17%)

8.0 Students know, derive, and solve problems involving the perimeter, circumference, area, volume, lateral area, and surface area of common geometric figures. (LO =18/112, 16%)
9.0 Students compute the volumes and surface areas of prisms, pyramids, cylinders, cones, and spheres; and students commit to memory the formulas for prisms, pyramids, and cylinders. (LO =13/112, 12%)
10.0 Students compute areas of polygons, including rectangles, scalene triangles, equilateral triangles, rhombi, parallelograms, and trapezoids. (LO =6/112, 5%)
11.0 Students determine how changes in dimensions affect the perimeter, area, and volume of common geometric figures and solids. (LO =3/112, 3%)

Angle Relationships, constructions, and Lines (Standards 12.0 – 17.0) (CST=17/65, 26%)

12.0 Students find and use measures of sides and of interior and exterior angles of triangles and polygons to classify figures and solve problems. (LO =8/112, 7%)
13.0 Students prove relationships between angles in polygons by using properties of complementary, supplementary, vertical, and exterior angles. (LO =4/112, 4%)
14.0 Students prove the Pythagorean Theorem. (LO =1/112, 1%)
15.0 Students use the Pythagorean Theorem to determine distance and find missing lengths of sides of right triangles. (LO =2/112, 2%)
16.0 Students perform basic constructions with a straightedge and compass, such as angle bisectors, perpendicular bisectors, and the line parallel to a given line through a point off the line. (LO =2/112, 2%)
17.0 Students prove theorems by using coordinate geometry, including the midpoint of a line segment, the distance formula, and various forms of equations of lines and circles. (LO =4/112, 4%)

Trigonometry (Standards 18.0 – 22.0) (CST=15/65, 23%)

18.0 Students know the definitions of the basic trigonometric functions defined by the angles of a right triangle. They also know and are able to use elementary relationships between them. For example, \(\tan(x) = \sin(x)/\cos(x) \), \(\sin(x)^2 + \cos(x)^2 = 1 \). (LO =3/112, 3%)
19.0 Students use trigonometric functions to solve for an unknown length of a side of a right triangle, given an angle and a length of a side. (LO =1/112, 1%)
20.0 Students know and are able to use angle and side relationships in problems with special right triangles, such as 30°, 60°, and 90° triangles and 45°, 45°, and 90° triangles. (LO =2/112, 2%)
21.0 Students prove and solve problems regarding relationships among chords, secants, tangents, inscribed angles, and inscribed and circumscribed polygons of circles. (LO =12/112, 11%)
22.0 Students know the effect of rigid motions on figures in the coordinate plane and space, including rotations, translations, and reflections. (LO =6/112, 5%)
Mathematics: Algebra II

Polynomials and Rational Expressions (Standards 1.0-4.0, and 7.0) (CST=19/65, 30%)

1.0 Students solve equations and inequalities involving absolute value. (LO=2/91, 2%)

2.0 Students solve systems of linear equations and inequalities in two or three variables by substitution, with graphs, or with matrices. (LO=6/91, 7%)

3.0 Students are adept at operations on polynomials, including long division. (LO=1/91, 1%)

4.0 Students factor polynomials representing the difference of squares, perfect square trinomials, and the sum and difference of two cubes. (LO=4/91, 4%)

7.0 Students add, subtract, multiply, divide, reduce, and evaluate rational expressions with monomial and polynomial denominators and simplify complicated rational expressions, including those with negative exponents in the denominator. (LO=13/91, 14%)

Quadratics, Conics, and Complex Numbers (Standards 5.0, 6.0, 8.0 – 10.0, 16.0 and 17.0) (CST=17/65, 27%)

5.0 Students demonstrate knowledge of how real and complex numbers are related both arithmetically and graphically. In particular, they can plot complex numbers as points in the plane. (LO=3/91, 3%)

6.0 Students add, subtract, multiply, and divide complex numbers. (LO=4/91, 4%)

8.0 Students solve and graph quadratic equations by factoring, completing the square, or using the quadratic formula. Students apply these techniques in solving word problems. They also solve quadratic equations in the complex number system. (LO=6/91, 7%)

9.0 Students demonstrate and explain the effect that changing a coefficient has on the graph of quadratic functions; that is, students can determine how the graph of a parabola changes as a, b, and c vary in the equation $y = a(x-b)^2 + c$. (LO=2/91, 2%)

10.0 Students graph quadratic functions and determine the maxima, minima, and zeros of the function. (LO=4/91, 4%)

16.0 Students demonstrate and explain how the geometry of the graph of a conic section (e.g., asymptotes, foci, eccentricity) depends on the coefficients of the quadratic equation representing it. (LO=2/91, 2%)

17.0 Given a quadratic equation of the form $ax^2 + by^2 + cx + dy + e = 0$, students can use the method for completing the square to put the equation into standard form and can recognize whether the graph of the equation is a circle, ellipse, parabola, or hyperbola. Students can then graph the equation. (LO=6/91, 7%)

Exponents and Logarithms (Standards 11.0 –15.0) (CST=15/65, 23%)

11.0 Students prove simple laws of logarithms. (LO=6/91, 7%)

11.1 Students understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

11.2 Students judge the validity of an argument according to whether the properties of real numbers, exponents, and logarithms have been applied correctly at each step.

12.0 Students know the laws of fractional exponents, understand exponential functions, and use these functions in problems involving exponential growth and decay. (LO=3/91, 3%)

13.0 Students use the definition of logarithms to translate between logarithms in any base. (LO=1/91, 1%)

14.0 Students understand and use the properties of logarithms to simplify logarithmic numeric expressions and to identify their approximate values. (LO=3/91, 3%)

15.0 Students determine whether a specific algebraic statement involving rational expressions, radical expressions, or logarithmic or exponential functions is sometimes true, always true, or never true. (LO=4/91, 4%)

Series, Combinatorics, & Probability and Statistics (Standards 18.0 –23.0 Probability and Statistics 2.0 & 7.0) (CST=14/65, 20%)

18.0 Students use fundamental counting principles to compute combinations and permutations. (LO=2/91, 2%)

19.0 Students use combinations and permutations to compute probabilities. (LO=2/91, 2%)

20.0 Students know the binomial theorem and use it to expand binomial expressions that are raised to positive integer powers. (LO=2/91, 2%)

21.0 Students apply the method of mathematical induction to prove general statements about the positive integers. (LO=1/91, 1%)

22.0 Students find the general term and the sums of arithmetic series and of both finite and infinite geometric series. (LO=6/91, 7%)

23.0 Students derive the summation formulas for arithmetic series and for both finite and infinite geometric series. (LO=3/91, 3%)

24.0 Students solve problems involving functional concepts, such as composition, defining the inverse function and performing arithmetic operations on functions. (LO=3/91, 3%)

25.0 Students use properties from number systems to justify steps in combining and simplifying functions. (LO=2/91, 2%)